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Conservation laws in electrically polarizable spatially 
dispersive media: 11. Additional boundary condition 

V G Bar'yakhtar, B I Khudik and I I Obozhin 
lmtitute of Metdl Physics, Ukrainian Academy of Sciences, 252680, Kiev-142, USSR 

Received 10 August 1990 

Abstract. The additional boundary condition (ABC) is considered from the point of view of 
the angular momentum Conservation law. This ABC is shown to be representable as a 
continuity condition for the macroscopic flux of internal angular momentum and is proved 
to be consistent with the ABC used previously by various authors, which reveal the physical 
reasons that lie behind the very existence of the ABC problem in macroscopic crystal optics. 

1. Introduction 

In part I of this work (Bar'yakhtar et a1 1991) we have substantiated the possibility of 
obtaining a macroscopic additional boundary condition (ABC) as a continuity condition 
for the macroscopic flux density of internal angular momentum (IAM). It was shown that 
to solve this problem one must study conservation lawsdescribing the spatially dispersive 
(SD) medium with excitonic polarization within the scope of the general approach, 
where mechanical vibrational, polarization and electromagnetic degrees of freedom are 
considered together. 

The set of equations (21)-(24), (29) and (32) obtained in part I within the scope of 
suchageneralapproachenablesus tostudy theseconservationlawsand to obtain balance 
equations for constants of motion by applying the variational formalism presented, for 
example, in the monograph by Bogolubov and Shukov (1980). We give some basic 
principles of this formalism in section 2. The balance equations are derived in sections 
5.5. The statemeot of boundary conditions (BC) and an analysis of them are given in 
sections 6 and 7. Finally, in section 8 we summarize our conclusions. 

2. Basic principles 

To begin with, let us consider a closed system consisting of the material body and its own 
electromagneticfieIdsEandi3 with the external fields@ and% beingabsent. Inthiscase, 
in accordance with the Nother theorem, we may find the mathematical representation of 
the conservation laws and obtain an explicit form of the constants of motion by setting 
to zero the variation of action integral A ,  which is due to variations of coordinates x, of 
time f and also of the field variables U, p .  A and a. The aforesaid variations, which all 
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areconcerned with infinitesimal space and timedisplacementsor withinfinitesimalspace 
rotations, are given as 

V G Bar'yakhfar el a1 

x , - * x ;  = x k  + 6x1, 

I-+ 1' = t + 6t 

' I J " ( x , f ) - + Y ; ( x ' , f ' )  = Y"(X, l )  t- SY"(X,f) 

(1) 

Here 6 denotes the variation holding material coordinatesX fixed, and Y,, runs over all 
field variables and their space and time derivatives as the subscript n runs through the 
set of integers. Using relations (1) we may write 

[SSe + Se(J0 - l)] d3xdf 

where & denotes the variation holding x and 1 fixed, but Jo is the Jacobian of the 
transformation (l), 

J o  = 1 + (ax,),, + a,(&). (3) 
Note that the variation &commutes with the operations a / a x  and a/%, but the variation 
6 does not. 

Equation (2) reflects the fact that Lagrangian density Se and the space-time volume 
element d3x df are invariant under space and time displacements and under space 
rotations; therefore in equation (2) one should understand A to be an arbitrary space- 
time region. 

For the case of Lagrangian density 2 constructed in I we may rewrite equation (2) 
as 

where 

and 

Above we used the notation defined in I. Hereafter to avoid repetition we shall use 

To derive equations (4)-(6) we used Lagrangian equations (21)-(24) of I. Kecping 
them without notice and ask the reader to refer to part I of this work. 

in mind that A is arbitrary, we may reduce equation (4) to 

a,% + ~g,,, = 0. (7) 
Thus, substituting specific expressions for the variations of field variables in equations 



Conservation laws in SD media: I1 2563 

(5)-(7) one can find the constants of motion in explicit form. Then assuming external 
fields to be non-zero and using equations (21)-(Z), (29) and (32) of I, one can derive 
balance equations for these constants of motion. 

Now let us study the conservation laws of linear momentum, angular momentum 
(AM) and energy in detail. 

3. Momentum conservation 

To find a mathematical representation of the conservation law of linear momentum we 
use the transformation (1) where 

6x = const 

6u = 6x 

6t = 0 

6% 3 0. 
Here, for short, the symbol x denotes a number of field variables b, A, @}. Then the 
expressions for the variations of the field variables assume the following form 

Substituting the foregoing expressions in relations (5) and (6), and dropping an insig- 
nificant coefficient 6xj  we get 

. 
&U * = X*., bx, 6x  = -6x jx . j .  (9) 

1 1 
% = puj + - [B X pp], + - D m 4 , . j  

C 4nc 
a 2  1 

%k =- x A . j  + u k ( P v j  f [B PPI,) + P m . j n m k  + 2pm.l jnmkl  - ( P m , j n m k l ) , l  
auA,k  

(10) 
1 

4z +-(H,&,kiAi., + D k @ , j )  + y a k ,  

where D and H are conventionally the electric induction and the magnetic field strength, 
respectively, 

andcdenotes the velocityof light in vacuum. Toderive relations(10) we usedequations 
(6), (10) and (14) of part I and also the identity (Al.l) from part I. 

In order to derive expressions (10) in the gauge-invariant form we must add to 
equation (7), with% and%, beingdefined byrelations(lO), the followingidentity, which 
is the corollary of the Maxwell equations: 

D = E + 4np H = B - 4 z p m  (11) 

Then, using relation (A1.9) of part I we may rewrite equation (7) as 

whereg, is the momentum density in the Abraham form 

and ajk is momentum flux density 

Here tensor tjk is defined by equation (33) of part I, and the tensor pjk is 

(16) 
As is seen from equation (14) the momentum density I: consists of the mechanical 

a&j  + Ojk,k = 0 

gi = p o i  + (1/4nc)[E X BIi 

Ujk = P V j V K  + t jk  + @,A. 

(13) 

(14) 

(15) 

p jk  = - (1/4n)(DkE, + B k H , )  + (1/8z)(E' + B Z ) 6 ,  -pm,Bib,k.  
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momentum density pu and that for the electromagnetic field generated by the material 
body, (1/4m)[E x B ] .  By using the massconservation law (A1.2) and equations (32)of 
I,  and also by using Maxwell's equations, we get balance equations in the form 

V G Bar'yakhtar et ai 

wheref, is given as 
f, = PP~E, , ,  + pmrB/,, + ~,((1/~)[Pp x N j ) .  (18) 

The last term on the right-hand side of equation (18) is the so-called Abraham force. It 
is important that this term arises not only in equation (176) but also in equation (170). 
This is the reason why one must interpret this term as a force (Abraham's paint of view) 
andnot asa portionoftheelectromagnetic fieldmomentum (Minkowski'spoint ofview). 
Confusion like this is concerned with the problem of making a choice in macroscopic 
electrodynamics between Abraham's energy-momentum tensor and that in 
Minkowski's form. Details may be found, for example, in monographs of Mdler (1972) 
and Ginzburg (1981). 

As is seen from equations (17) the cause of confusion is the incompleteness of 
description. Had investigators described the medium within the scope of the general 
approach, the aforesaid problem would have not arisen at all. 

To turn to the case when extemal fields are non-zero, it is sufficient in equations 
(14)-(18) to substitute quantities % and for E and 6, which reflects the fact that the 
following transformation 

E-+%= E +  @ B-'33 = B  + IB (19) 
does not break the validity of any relation used to derive equations (14)-(18). 

4. Angular momentum conservation 

To find a mathematical representation of the conservation law of AM we use the trans- 
formation (1) with 

s x i  = Eaxxj6p?h S U A  = XA,& sa = - Q , r s x i  
(20) 

&'pi = &ijhp,6pk -pi,i6X, 8.4 = E;jh,kAj6pk -Ai,,&,. 
Here vector 6p  denotes an arbitrary infinitesimal angle of space rotation. 

Let us pay attention, first of all, to the restraints that rotational invariance imposes 
on the Lagrangian density 2. By substitutingrelations (20) in equation (2 ) .  one may get, 
keepingin mind that in equation ( 2 )  A is arbitrary, the condition of rotational invariance 
in the following form 

with 
Ekjr(uji - ' l j r )  E 0 

' l j i  = (ni + P E j ) P i + n j m P i , m  + n j m / P i . m , - ( n m i i P m . j ) . l + ~ j  dcpi 

E j  = E j  + ( l / c ) ( u  X B], .  

(21) 

(22) 

(23) 

where 

To be convinced of the validity of equation (21), one should substitute (15) in (21)  and 
then use equation (40) of I. 
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By substitutingrelations (20) in equations (5)-(7), weget aftersomealgebra (omitted 
here since it is similar to that employed in the previous section) the AM conservation 
statement of the form 

arJ; f T i k , k  = 0 (24) 
whereJ is the AM density vectoI 

J = L + l  

with 

L i = E  l jkXjgk  

li a &QkYjPk 

and C.k is the AM flux density tensoi 

Tik = T p  3. Ti;) 

T p  = E . . X . U  

TQ = [ j D k  c E i i l q , k .  

with 

I U- 

Here the following notation was used 

zjtk = x j k P l  + n j n k p 1 . n  an!qPn.l - njk%nPf.  (264 
As seen from equation (25a), the total AM density consists of the orbital component L, 
which depends directly on the centre-of-masscoordinatesx, and the infernalone I ,  which 
isnon-zero only for the case ofpolarizedmedia. Relations (26b, c)definecorresponding 
components of the AM flux density. 

The key point in relation (26c) is that IAM may be transferred through the crystal 
provided that spatial dispersion is the case. Moreover, as is seen from equation (264, 
inclusion of the terms dependent on second-order space derivatives of p as the com- 
ponents of the Lagrangian density gives rise to three additional terms in the expression 
for Tff in comparison with results of the work by Lam and Lax (1978). 

By using equations (ab, c) and also by using equation of motion (22) forp from part 
1, one may get balance equations of the orbital AM component and of the IAM. The 
former is 

a&, + T!,$a f EVkojk = 0. (270) 
The latter should be decomposed in a way such that the last term on the left-hand side 
of equation (27a) be different from a corresponding term of the IAM balance equation 
in sign only. Keeping this in mind we use equation (21) and get 

a,[; + T!ik - & g k q j k  = 0. (27b) 
It is the method with the aid of which one might derive the expression for T!f from the 
IAM balance equation (276) (with the latter being the corollary of the equation of motion 
forp only); but to follow this procedure it is necessary that the expression for uik be at 
hand. In other words, it is impossible to obtain the expression for the 1.4~flux density 
solely from the equation of motion forp; just like the case mentioned above in which it 
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was insufficient that (176) be used solely to resolve the disagreement between Abraham 
andMinkowski, That iswhythegeneralapproach wasnecessaryfrom thevery beginning. 

Besides, it is appropriate to note the following important fact. In the limiting case 
U+ 0, dealt with by ordinary crystal optics, the terms (18) and (19) of part I ,  which 
describe spatial dispersion, become 

V G Bar'yakhtar et a1 

bi.kB&j., - 6PiB$iPj,k!. (28) 

(29) 
B(V) - B!o) (1) - 

Here fdO) and I?(') possess the following symmetry upon interchange of tensor indices: 

ilk1 - i d k  and Bil, - !ilk, 

Meanwhile, the equation of motion for p involves only symmetric portions, B ( O )  and 
bI1J, of these tensors: 

n = 0 , l .  (30) /'j'"' ,,kl - - z(B$L 1 + E:$ + B$i + B$) 
That is why, on considering the problem within the scope of ordinary crystal optics, 
investigators confine themselves to a description of the spatial dispersion in terms of 
8'") only. As is seen from equation (26d), restrictions (30) do not hold for the expression 
of the IAM flux density, which reflects the fact that the three terms on the right-hand side 
of equation (22) from I are involved in the expression (26d), having been multiplied by 
different factors.Thus,wemayinfer that theequationofmotionforp,or,inotherwords, 
the k-dependent dielectric permittivity tensor E(k), in general contains incomplete 
information on spatial dispersion. 

5. Energy conservation 

To consider mathematical formulation of energy conservation we use transformation 
(1) where 

Following the procedure described above and again omitting the algebra we get energy 
balance equations as 

a , w ,  + (c/4?r)[E x HI,,, + q = 0 

a,w, + {s, - ( c / ~ z ) [ E  x HI,},, - q = 0 (32) 

q = E .  a,(& - p m - a , B .  

Here energy density W is resolved into components associated with the electromagnetic 
field W, and the medium W ,  by 

w, = (E* + BZ)/& 

U', =$PO* + tp(d,p)*f-'(d,p)* + pZ 

and S is the vector of energy Bux density in the form 

C 
S - - [ E  X HI, + u,(W, -pp . E )  + p - 4n 

(33) 



Conservation Laws in SD media: II 2567 

If transformation (19) is employed, equations (24)-(27) and (32)-(34) will hold for 
the case of non-zero external fields. Let us note that formulae (33) and (34) are the 
generalization of the results obtained by Lax and Nelson (1976), Lam and Lax (1978), 
Agranovich and Ginzburg (1966), Bishop and Maradudin (1976) and Selkin (1977). 

6. Boundary conditions 

Letting N represent the inward normal to the crystal surface we may write BC for the 
case of a boundary surface moving with velocity U as 

[S, - Wv,]:;' N ,  = 0 (354 

where the square bracket notation indicates the jump at the boundary in the enclosed 
quantity and is given by 

[ .  . . I!,"' = (. . . )O"' - ( .  . . 

Relations (35) should conventionally be completed with BC for the electromagnetic 
field. We give below these BC obtained in work by Bar'yakhtar er af (1987) which hold 
true for the case of a moving boundary surface: 

= 0 
(36) 

[%I,lCt = [NX (u/c)l$ 
[%i]R"'=-4JT[pp,]p:' [%,]p,'= ( N . w / c ) . ( v , / c ) $ .  

$ = 4 4 N .  [PPI?."" - (~l/C)*I. 

Here 

Symbols I and 11 denote vector components normal and parallel to the surface element 
plane, that is 

= N . ( N - % )  31, = [NX [a XN]] 

Note that BC (36) are consistent with those obtained by Lax and Nelson (1976) but, in 
contrast, the right-hand sides of equations (36) are expressed in terms of polarizationp 
in an explicit way. 

By substituting expressions (25)-(26) for q, and for Jj  in equation (356) and by 
assuming the BC (35a) to be satisfied, one may rewrite (356) as 

€ii,[a,]:;n"' N k  = 0. (370) 

It is the BC we suppose to be used as an ABC. Notice that this ABC, in contrast with others 
obtained till now, is non-lmear in quantityp. Just as expected, in the absence of spatial 
dispersion, equation (37a) degenerates into a trivial identity. 
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By usingequations (36) we may, after some rather tedious algebra, reduce BC (35a, c )  
to the form 

['ski + 6kjh(pp,)2]p, '  Nk 0 (376) 

[ajk);,' Njk = 0 ( 3 7 4  
where the following notation was introduced: 

(Yk = x m k  dtP, +Xmkn dtPm,a-~mkn,n dtpm. (386) 
In equation (37b) terms of the order of (o/c)* or weaker were omitted. 

As for the ABC problem, BC ( 3 7 ~ )  and (37c) are of particular interest. One can 
generalize them to the case of N isolated exciton levels by employing the transformation 
(2)ofpart 1,so that theaforesaidequationswillassumetheformofasumoverNexciton 
modes. However, since conditions like these are to be satisfied not at a single frequency 
point but over some frequency range, they will happen to be split into a number of 
independent equations, where each one looks like (37) .  Thus, on considering the 'N 
exciton levels' approximation one may use equations (37) as BC for each isolated exciton 
mode. 

7. Analysis of boundary conditions 

In order to demonstrate how the obtained BC works, let us consider a well studied 
kxample, when a n-polarized plane electromagnetic wave is incident on a boundary 
surface of a crystal with T3m point group symmetry. The geometry of the experiment is 
as follows: 

N = (0; 1: 0) c = (0; 0; 1) 
k l c  8 I C .  

(39) 

Here c denotes the vector of crystalline uniaxial anisotropy and k is the wavevector of 
an incident ray. For the sake of simplicity, let us confine ourselves to a consideration of 
one single exciton mode, with which the following stored energy per unit mass is 
associated: 

A 2  = 6PiKijPj + $pr,kB$?,P)~ - b ; ~ ! j ~ i p i , k i .  (40) 
Substituting (40) into equations (37a. c )  and taking conventionally an average over a 
time period and also over a space"period along the surface plane (i.e. over the x 
coordinate) we get 
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where tensor quantities B ( O )  and 8") have already been defined in (30). Conditions (41) 
were written in a way such that the contributions of longitudinal and transverse modes 
be resolved. Notice that equations (41) are BC for excitons rather than for polaritons. 
So the set of equations (41) makes it possible to obtain exciton reflectivity without going 
beyond the frame of the macroscopic approach. 

Converting fromp(r, x) to Fourier transforms by substituting 

with 

into equations (41) we get 

( 4 3 4  

and 

Re 
3 

(p:(o, k("))(k(b) . p ( w ,  k(')))p\;) + p: (0, k("l)[k(b) X p ( w ,  k('))]J\;)} = 0. 
* = I  
b = l  

(43b) 

Here by summing over a and over b we take into account contributions of three exciton 
modes, two transverse (a = 1 , 2 )  and one longitudinal ( a  = 3 ) ,  which are inherent for 
the case of geometry (39). Asterisk denotes complex conjugation?. 

Supposing &, p,(w, k @ ) )  and Ea pJw, k(")) to be independent quantities one may 
linearize (43) as 

where the following notation was introduced 

and A and are some arbitrary dimensionless real parameters. 

i Note that equations (43a) and (43b) originate from AM conservation andenergy conservation laws, respect- 
ively. 
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In order to complete the set of equations (44), one must add to them BC (36), which 
for the case of a stationary crystal surface assumes the form 

with 

%(4 = (k(d)2 - &OWZ/C2 ,  

Here &,,isthe backgroundpermittivity,pis thecrystaldensity, Oistheangleofincidence, 
Go) is incident wave amplitude, and R denotes amplitude reflectivity, that is 

R = E(R)/E(O) 

where E(R) is reflection amplitude. 
To make an interface between this theory and results obtained earlier by different 

authors, let us consider the most simple limiting case of normal incidence, Solving thc 
set of equations (44) and (45) for R gives 

( 4 6 ~ )  R = (E - 1)/(6 + 1) 

with efficient index of refraction, E, being expressed as 

(EO t n)@ + (EO - n )  
(ria + n)@ - (Eo - n)  

A = n  (466) I .  

where ti = &in and 

fin = (Em + &o)/na 

Here n. = n(l)  + d2) and n, = d1)n(*) = n(')&#*, where n(') with a = 1,2 denote indices 
of refraction for two transverse modes ( polantons), but no) denotes that for longitudinal 
mode. Quantity @ in (466) may be expressed as 

@ = (K - ihn)/(K + ihn) 

K = 1 + ihn, + y(2)52/(p(3) + 

(474 

where 

(476) 

The ABC obtained by Hopfield and Thomas (1963) gives a result that looks like (46) 
provided 

IP = exp(-2inlw/c). (48) 

Here I is the thickness of an exciton-free surface layer. For the case of lnw/c 1 and 
(h,w/c)Z + 1 relation (47a) is consistent with (48) provided that for A the following 
expression is substituted 

h = (1 + y'*'p/y'")/w/c. 

Thus, one may conclude that in terms of Hopfield and Thomas' (1963) theory h is a 
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measure of the exciton-free layer thickness. If A = 0, we get from (44) Pekar’s (1957, 
1983) ABC in the form 

As for the quantity 5, its physical meaning will be realized if one notices that even for 
the case of normal incidence the amplitude of a longitudinal wave does not equal zero 
and is proportional to 51. Consequently, is a measure of the crystal point group 
symmetry breaking that occurs within the surface layer. However, to consider a con- 
tribution like that to reflectivity, so far as we know, has not been customary until now. 
So, keeping in mind that the purpose of this section is to compare the results shown 
above with those obtained previously by various authors, we shall hereafter set 5 = 0 
without notice. 

The ABC (44) may be readily converted to coordinate representation in the form 

[MP + Lrr(ap/JY)lly=o = O  (50) 
where notation le, = A/k0 was used (here ko denotes the wavevector of electromagnetic 
waves in vacuum), and 

is a matrix with real diagonal elements. 
Thus, one may conclude that relation (50) is the generalized ABC, which depends on 

a single phenomenological parameter, le,, where I,, is an integrated characteristic that 
describes the influence of the boundary layer on the exciton reflectivity through the 
difference between optical properties of the layer (spatial dispersion properties in 
particular) and those of the bulk crystal. For the particular case, when we stay within 
the frame of the dead-layer model approximation proposed by Hopfield and Thomas 
(1963) with electromagnetic waves falling normally on the SD medium from the vacuum, 
the effective length of the boundary layer, lefr, agrees with the thickness of the dead 
layer, 1. Meanwhile the realm of application of the generalized ABC (50) seems to be 
much wider than that for the dead-layer approximation. For example, on making use of 
ABC (50) one may even treat the surface layer, which is essentially inhomogeneous in 
the direction normal to the crystal surface; the only limitation is that the effective 
thickness of this layer must be sufficiently small (k0& -e 1) that making use of BC for the 
electromagnetic field in the form (36) be justified. Moreover it seems that there is no 
obstruction whatever preventing us from considering as a boundary layer in ABC (50) 
not only the surface layer of the crystal but also, say, a thin film. 

For the case of normal incidence, as was to  be expected, the ABC (50) may be readily 
reduced to the commonly used form 

[%Pi + bi(aPi/aY)ll,=o = 0 i = x , y  (52) 

where ratios aJbi (i = x ,  y) are real, which in accord with Bishop and Maradudin (1976) 
and with Selkin (1977) is a consequence of making use of the energy conservation law. 

Since, according to the works by Birman and Zeyher (1974), Birman (1982) and 
Halevi and Fuchs (1984), the form of the ABC in its coordinate representation is directly 
related to the exciton reflectivities, we may now tum to derivingexplicit expressions for 
these reflectivities. Unfortunately, we could not immediately apply the formulae given 
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in the works just mentioned above to the physical situation under consideration. First, 
for the case of oblique incidence, the ABC (50) may not be reduced to the form (52). 
Secondly, the medium being consideredis assumed to be anisotropic. So we are to derive 
expressions for exciton reflectivities ourselves. 

To begin with, we must show dispersion relations for exciton modes. After some 
algebra one may get 

V G Bar'yakhtar et al 

(k(O)* = ( ~ 2  - W + ) l ( P g ) j J  (534 

In formulae (53) k('1 and k(') are wavevectors for longitudinal and transverse excitons, 
respectively, but k v  and kyl are correspondingcomponentsnormal to the surface plane. 

Note that for the geometry (39), no matter what the quantity q equals, every 
exciton mode may be resolved into longitudinal and transverse components with the 
corresponding unit eigenvectors for exciton polarization being representable as 

( I+  I = (4;  r(0) ([-I = (4; r(q (554 

( t -  I = (v); q) (@) I f l .  (556) (t+ j = (rW; -q)(p) liz  

For the sake of convenience we use here 'bra-ket' notation, but '+' and '-' denote that 
thecorrespondingexciton wavespropagate along they axisand in theoppositedirection, 
respectively. Thus, for the case when exciton waves fall on the crystal surface and reflect 
inwards, we may express the excitonic polarization Ipe") as 

1 ~ ' " ) -  [Ia-)GnpO - Y O )  + I L ~ + ) G , ( Y ) ~ ~ G , ( - Y O ) I ~ ~  (564 

G d Y )  = exP(ik:n'lYl). (56b) 

where the Green function for excitons is 

Hereafter summation over all repeated Greek subscripts is implied. Quantities ss (p  = 
I ,  t )  characterize the source of exciton waves, which is assumed to be located at the point 
y o  inside the crystal and far away from the boundary surface, y <yo. In relation (56.2) 
r;: is the exciton reflectivity tensor in polarization eigenvectors representation. Keeping 
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in mind that I l+) and It+) compose a complete basis in the ( x ,  y) plane, one may express 
matrix M from equation (51) in a similar way as 

me@ = ~ , ( y +  IhIB+) ( 5 7 4  
where 

T,(Y+ ID+) = 6,. (57b) 
In formulae (57) the fact that eigenvectors ( I +  1 and ( t+ I are not orthogonal was taken 
into account. 

Now let us note that ABC (50), as has already been emphasized above, are the ABC 
for excitons rather than those for polaritons. So, there is no need to consider polariton 
modes to obtain reflectivities r 3 ,  but we must only substitute relations (56) into (50). 
By using again the fact that I[+) and It+) compose a complete basis one may get, after 
some algebra, the following relation 

r z  = (i@)leai + m)z(iky)leai  - m ) y e ~ E p  (Y = I ,  t ;  p = I ,  t (58) 
which completes the derivation of exciton reflectivities. 

Here we used the notation 

When normal incidence is the case, formula (58) may be substantially simplified as 

The key point in equations (58) and (59) is that @is not an arbitrary parameter but is 
the specified constant that describes properties of exciton modes within the bulk of the 
crystal. For example, in the case when p(l) = 0 that ordinary crystal optics deals with?, 
one may, by comparing macroscopic dispersion relations (53) with those used in micro- 
scopic theory, express y(3) and I#*) as 

v(3) = q ( 2 )  = p$? /pp  = M , / M ,  

Here MI, and M, denote effective mass for longitudinal exciton and that for transverse 
exciton, respectively. 

In the light of the foregoing reasoning it is obvious that our approach differs in 
essence from the approach proposed by Forstmann (1979). In his work Forstmann split 
up the condition of energy flux continuity at the surface into two separate BC, which in 
terms of this work would mean that two different components on the left-hand side of 
equation (43b) should be set zero separately with equation (43a) beingomitted. Had we 
followed this method, the ABC would look like (44) with 5 = 0 provided that quantity 
@) be an arbitrary parameter. Consequently, Forstmann's method being applied to SD 
media with excitonic polarization is equivalent to treating le, and Vc3) in equations (58) 

t It isappropriate tonote that, whenoneconsidersanexperimentalgeometry like (39), approximation@') = 
Oiscenainly justified. 
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Table 1. Conditioosofconsistency between formulae (S9) andvaluesof ri' and r f  by which 
the ABC used previously by various authors are characterized. The case of normal incidence 
(q  = 0) isconsidered. Condition kd., 6 1 isassumed 10 be satisfied. 

and (59) as arbitrary parameters, which for the case of normal incidence does not differ 
from treating quantities ry  and r? themselves as arbitrary parameters, thereby adding 
nothing new in comparison with, say, the approach proposed by Halevi and Fuchs 
(1984). 

It is appropriate to note also that Forstmann removed the indeterminacy mentioned 
above by making use of BC for the electromagnetic field which were chosen to be much 
more restrictive than BC (36) in this work, with justification being hardly convincing. In 
our opinion, an approach like that is certainly equivalent to postulating, consciously or 
othenvise. the new ABC, say, in the form 

where j ,  is electric current normal component (orj, = pap, /& in terms of this work), 
and angle brackets (. . .),denote averaging over time. 

It is the condition of IAM flux continuity (43a) that enables us to express two quanti- 
ties, $ and r?, in equation (59) (or even four quantities r 3  in equation (58)) as being 
governed by one single parameter, let+ In turn, le, is certainly determined by the specific 
physical state of the crystal sample under study. 

When one deals with some non-dissipative SD medium, where there are no transverse 
excitons (t/A2) = 0, $(,) = 0) but longitudinal modes (say,plasmons) only areconsidered, 
the reflectivity tensor r;$ tends to be the unit matrix 

no matter what the quantities q and le,, equal. For the particular case of normal incidence 
(q = 0) this result might easily be derived from relation (59) by setting 

.ii (0) - c i l ( O ) ) ,  = 0 

r 3  + 6, (60) 

$(3) 4 0 ky) + m. 

As is seen from equation (60). to describe, say, metallic media with negligible energy 
dissipation there is no need to introduce boundary layer thickness, le,, or any other 
arbitrary parameter. 

It is important to note that the conclusion mentioned above is distinct from one made 
by Forstmann and Stenschke (1977). The definiteness in equation (60) was achieved by 
making use ofequation (43a), while Forstmann and Stenschke achieved this by imposing 
restrictions on BC for the electromagnetic field. 

Finally we may compare formulae (59) with the corresponding values of the par- 
ameters rF and by which the ABC used previously by various authors are charac- 
terized. We show results of this comparison in table 1 in the way Halevi and Fuchs (1984) 
did. 
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Since for q = 0 the following equation holds 
k(:) = k j ? ( p - l / 2  

then we may conclude that the Rimbey-Mahan (Fuchs-Kliewer) ABC would be con- 
sistent with formulae (59) if $!(’) Q 1 (@ S 1). Meanwhile for most cases with which 
crystal optics deals we have @) 2 1. Then as frequency w tunes away from wT the 
specification of ABC runs through the sequence shown below: 

kY)ien < 1 kY)i,, S 1 k(:)i,, P 1 

Pekar (1957) Hopfield and Thomas (1963) Tingetal(1975). 

8. Conclusions 

From the above we may conclude that taking the law of angular momentum conservation 
into account enables us to solve the ABC problem consistently within the frame of the 
macroscopic approach. In particular, reflectivity for excitons may be found by applying 
macroscopic methods only. In addition, the relation between angular momentum con- 
servation and AEX reveals the physical reasons behind the very existence of the ABC 
problem in macroscopic crystal optics. 

The ABC obtained above is not free from some disadvantages, among which we 
should mention its limited degree of detail, but this is the cost we pay for its generality. 
Moreover, for some simple experimental geometries the ABC degenerates into a trivial 
identity. However, a disadvantage like this seems to be surmountable by means of 
applying the method of ‘perturbed‘ geometries and of letting these perturbations 
decrease towards zero. 
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